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LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS 
GENERATING POSITIVE QUADRATURE FORMULAS 

FRANZ PEHERSTORFER 

ABSTRACT. Let pk(X) = X + *--, k e No, be the polynomials orthogonal on 
[-1, +1] with respect to the positive measure dua. We give sufficient condi- 
tions on the real numbers ,u;, j = 0, . m, such that the linear combina- 

tion of orthogonal polynomials ZJ% has n simple zeros in (-1, + 1) 
and that the interpolatory quadrature formula whose nodes are the zeros of 

F-7=0 ,jPn-i has positive weights. 

1. INTRODUCTION 

Let a be a positive measure on [-1, 1 ] such that the support of da contains 
an infinite set of points. In this paper we consider interpolatory quadrature 
formulas with positive weights, i.e., quadrature formulas of the form 

+1 n 

( 1.1 ) ] 1 f(x) d a(x) = E cjf(xj) + Rn (f), 
j=1 

where -1 < xl < x2 < < Xn < 1, cj > 0 for j , ...,n, and Rn(f) = O 
for f E P2n-I-m IO? < m < n (Pn denotes as usual the set of polynomials of 
degree at most n ). As in [6], such a quadrature formula is called a positive 
(2n - 1 - m, n, da) quadrature formula. If a is absolutely continuous on 
[-1, 1], with a'(x) = w(x), we write also (2n - 1 - m, n, w) instead of 
(2n - 1 - m, n, da). Furthermore, we say that a polynomial t, E P, generates 
a positive (2n - 1 - m, n, da) quadrature formula if tn has n simple zeros 
x < x2 < ...< xn in (-1, + 1) and the interpolatory quadrature formula 
based on the nodes Xj is a positive (2n - 1 - m, n, da) quadrature formula. 
Since the degree of exactness is 2n - 1 - m, we get with the help of (1.1) 
the well-known fact that such a polynomial tn is orthogonal to Pnlrm with 
respect to da, and hence is of the form 

m 

(1.2) tn (x) = Zupn-J(x), 
j=0 
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where Uj E R and Pk(X) = Xk+ *,k E No, denotes the polynomial of degree 
k orthogonal with respect to du. For that reason we are interested in condi- 
tions on the numbers yj such that tn generates a positive (2n - 1 - m, n, du) 
quadrature formula. For small m, m = 1, 2, 3, necessary and sufficient con- 
ditions on the numbers Uj can be obtained from the general characterizations 
of positive quadrature formulas given by the author in [7, 8] (see in particu- 
lar [8, Theorem 2(b)]), by Sottas and Wanner [10] (note that the conditions 
given there do not imply that the nodes are in (-1, +1) ), and recently by 
H. J. Schmid [9]. But for larger m the computational work increases rapidly, 
and the conditions become very complex (see the examples given in [9, 10]). 
Thus, the problem arises to find "simple and applicable" sufficient conditions on 
the numbers Uj such that EZ M jp_ , generates a positive (2n - 1 - m, n, du) 
quadrature formula. This problem is studied and partly solved in this paper by 
giving first a general sufficient condition on the uj 's, from which simpler con- 
ditions are derived. 

2. PRELIMINARY RESULTS 

In order to state our results, we need some known facts on polynomials or- 
thogonal on [-1, 1], resp. orthogonal on the circumference of the unit circle 
IzI = 1. Let us recall that the polynomials Pn = x n + *--, n E N, orthogonal 
with respect to da on [-1, + 1] satisfy a recurrence relation of the form 

(2.1) Pn (X = (x-an)Pn-i(X)- nPn-2(X) for n E N, 
where p_1 = 0, po = 1, aE (-1, +1) for n e N, and An > 0 for n > 2. 

(1) N0tes-aldascad 
p) n E No, denotes the so-called associated polynomial, defined by 

(2.2) P l)(x) = pn+1(x) pi+1(t)da(t), 

where do = fr+1 da(t). Note that the (1) 'S are polynomials of degree n with where do f 11 the pn saeplnm 
leading coefficient one, which satisfy the following recurrence relation (see e.g. 
[2, Chapter 3, ?4]) 

(2.3) Pnl (x) = (x - an )p5)1(x) for n E N, 
where the a 's and A 's are determined by (2.1). 

We are now ready to state the first simple characterization of positive quadra- 
ture formulas. 

Lemma 1. Let n, m E No' n > m, and let j E R for j = 0,..., m 0# 0. 
Then EJI j ,p P generates a positive (2n - 1 - m, n, d v) quadrature formula 
if and only if Z70m ,1p._ has n simple zeros in (-1, +1) and the zeros of 

Zm H'pnj and >hI% g1p l -( j separate each other. 
Proof. Setting 

m m 

tn= E jPn_j and tn - =E jPn ) -j I 
j=o j=0 
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we get for the weights cj, using relation (2.2), 

+1 (1) 

j= [ tn (X) _ da(x) = do () for j = , ..., 

Hence the conditions c > 0 for j = 1, ..., n are equivalent to the interlacing 

property of the zeros of t, and tl__ . o 

Next, denote by Pn(z) = zn + *, n E No, the polynomial orthogonal on 
[0, 27r] with respect to the positive measure 

(2.4) 7=f (cosq) for?0bE[Of, 7], 
acosrC ) for E (7r, 27X], 

i.e., 

I e P,,(e )dy(O) = for k = O, n - I . 

Note if a is absolutely continuous on [-1, +1] and :/(x) = w(x), then tV is 
absolutely continuous with /'(q) = w(cosb0) Isin q1 for q e [O, 27r]. It is well 
known (polynomials orthogonal on the unit circle are studied extensively in [3]) 
that the Pn 's satisfy a recurrence relation of the type 

(2.5) Pn(z)=zP_ l(z)-an1Pn* l(z) fornEN, 

where an E (-, +1) for n E No and where Pn(z) = znP"(zl) denotes 
the reciprocal polynomial of PnF. The reason that the parameters an are real 
and have absolute value less than one consists in the facts that yi is odd with 
respect to ir and that qi has an infinite set of points of increase (see [3, p. 5]). 
Furthermore, let 52"(z) = zn + . be defined by the recurrence relation 

(2.6) nn(Z)=zQn 1(Z)+an-i2n*-1(z) fornEN. 

Qn is called the associated polynomial of Pn. It is well known that both 
polynomials Pn and n, n > 1, have all their zeros in the open unit disk 
z I < 1. The following relations hold between polynomials Pn orthogonal on 

[-1,1] with respect to da and polynomials Pn: 

(2.7) pn(x) = 2 nn+ Re{1z n+1P2n_l(z)l 

(2.8) P ) (x) = 2 Imf zln (} 

where x = 2(Z+ z1), z = ei, q$ E [0, ij. The parameters (a") are given 
by [3, (31.4)] 

v -u 
(2.9) a2nl I -(u +vn) and a n n 

n n 

where 

U= P;; and v =- 
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Moreover, 

(2.10) a2n~= forn eNO, if v(x) = -a(-x) a.e. on[-1, 1]. 

For example, we obtain for the Jacobi polynomials p (")(x) = Xn which 

are orthogonal on [-1, 1] with respect to the weight function w ')(x) = 

(1 - x)a(l + x)4, ca, ,B > -1, that the corresponding parameters a(a,f) ap- 
pearing in the recurrence relation of Pn,>T(z) = zn + * are given by 

(2.11) -2+ a+f+1n forn EN 
a + A + 2n + 3 X 2n -ca + i+ n + 2 N 

Hence we get for the ultraspherical case p (A) x) :=P (-1/2 i - 1/2) (x) and w (A) (x) p n 

=(1 -x2)A-1/2 that 

(2.12) a2i) 1=-11. and a2 =0 for n e N0, 

and in particular for the Chebyshev case, i.e., for the case where A = 0 and 
w(x) = (1 - x2)112, that 

(2.13) an=0 fornENo nQn(z) = Pn(z) =zn for n E No 
Finally, we shall need 

Lemma 2. Let n E N and 1 E Z with 2111 < n. Assume that the realpolynomial 

tn(z) = zn + .* has all its zeros in the open unit disk Izi < 1. Then the cosine- 

polynomial Re{z' tn (z)}, resp. the sine-polynomial Im{z' tn (z)}, z = ei , 
4 E [O, r], has n - l zeros 0 in (O, 7r), resp. n - l - 1 zeros Vij in (O, 7r), 
and their zeros separate each other, i.e, 0 < i1 <02< < ... < Vn-1-1 < 

On-I < 7f . 

Proof. Since Rd{z Itn(z)} (respectively Im{z' tn(z)} ) is zero at z =e 
q E (0, 2ir), if and only if 

z 21 n(z) = -1 (respectively + 1), 
tn (z) 

which is equivalent to 

arg zn21 + arg tn() = (2k - 1)7r (respectively 2k7r), 
t* (z) 

k E NO, we get, taking into consideration the fact that arg tn (e'")/t* (e"') in- 

creases from 0 to 2n7r if b varies from 0 to 2ir, that both Re{z Itn (z)} and 
Im{z Itn (z)} have 2(n - 1) zeros in [0, 2ir) and that their zeros separate each 
other. Observing that Im{z tn (z)} has a zero at b = 0 and b = , the 
assertion follows by the symmetry of trigonometric polynomials. o 

3. MAIN RESULTS 

First, let us introduce the following polynomials, which play a crucial role in 
this paper. 
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Definition. For given n E N let the polynomials Qz, 2n-1(Z) = Z" +*--, v e 
{O, ... , 2n - 1 }, be defined by the recurrence relation 

(3.1) Qv,2n-1(Z) = ZQv-1, 2n-1(Z) - a2n 1 vQ>-1,2n- 1 

for v =1,...,2n - 1, 

where Qo 2n-1 = 1 and the a2n-l-,'s are the parameters appearing in the 

recurrence relation (2.5) of the Pn 's. 

The polynomials Qv 2n- 1 have the following important properties. 

Lemma 3. Let n E N. The following propositions hold: 

(a) Hlv-OI(I - 
la2nf2-KI) 

< IQ * 2n-l1(z)l < HlvO(1 + la2f 2KI) for lz| < 1, 
where vl {E {0 2n - I}. Moreover, Qv 2n_1 has all zeros in IzI < l. 

(b) Let v E {O, ... , n - 1}; then(z = e,x = cosk, 0 E [O,7 ]) 

n1 -n+1 
Pn(x) = 2 Re{z Q2v, 2n- I (Z)P2(n-v)- I (z)} 

and 

(1) -n?1 IM -n+1 
pn- I(x) = 2 Im{z Q2u 2n- I(z)Q2(n-v)-l (z)} sin ?. 

Proof. (a) follows immediately from (3.1) and [3, (26.6)]. 
(b) We first note that the recurrence relations (2.5), resp. (3.1), imply (see 

[3, (3.6)]) that 

(2.5' )P Z) =pn1 ()a_ 1Pn_ 1(Z) for n EN, 

and 

( 3.1) Q v,v1(z)- 1, 2n- 1(z) - 
a2n_1IvZQv 1,2n_I(Z) 

for v =1,...,2n - 1. 

With the help of all these recurrence relations it follows by induction arguments 
that 

ZP2n-1(z) + P2*n-1(Z) = ZQv, 2n-1(Z)P21(Z) +Qv,2n-1(Z) -1--v(Z) 

which, in view of (2.7) and taking into consideration the fact that for z = e 

2 Re{z IP2n- I (z)} = z (zP2n- I (z) + P2n - (z)), 

gives the first relation. 

Analogously as above, one demonstrates that 

2n1 Q2n- 1 (Z) = ZQ, 2n- 1 (z)Q2n 1I- (Z) Qv, 2n- 1 (z)Q2n- 1-v (z)' 

which in conjunction with (2.8) gives the second relation. o 
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The main result is now the following 

Theorem 1. Let n, m E NO' m < n, 0, ...Um E R and io 5 #O. Then 
X$0 1u 1p" ~ generates a positive (2n - 1 - m, n, du) quadrature formula if 

EJO=LjZ Q2m-2j2(n-j)(Z) where U= 2'j has all its zeros in the open 
unit disk Izl < 1. 

Proof. Putting 
m m 

tn(x) = Z,1pn-j(x) and tQl1(x) =E ,jP(l)I_j(x) 
j=0 j=0 

we get with the help of Lemma 3(b) that (z = e", x = COS 0, ? E [O, i]) 

(3.2) tn(x) = 2 n+I 
Re{z-mq2m(Z)Z- (n-m)+lp - m) 

and 

t( ) (x) = 2n+l Im{z mq2m(Z)Z (n-m)+l Q2(n-m)-1(Z)}/ sin$, 

where 
m 

(3.3) q2m(Z) = 
Z/IIZ'Q2m-2jI 2(n-j)-1 (Z)' 
j=O 

Assume now that q2m has all its zeros in Iz < I . Since the same is true for 

P2(n-m)- I it follows from Lemma 2 that tn has n simple zeros in (-1 , +1). 

Thus, by Lemma 1, it remains to demonstrate that the zeros of t, and tl) 
separate each other. 

Using the relation 

Re a Re b + Im a Im b = Re{ab}?, 

where a, b E C, we get for z = eio 

Re{z (n )q2m(z)P2(fnm)-1 (z)} Re{z (n1 q2m (z) ?2(n -m) - (z)} 

+ Im{ z q2m (Z)P2(n-m)-1 (Z) } Im{ z q2m (z) Q2(n m)- I (z)} 

= Iq2m(z)I Re{P2(n-m)_l(Z)22(n-m)-l(Z)} 
2 

= Clq2m(Z)l C E R ? 

where the last equality follows from the known relation [3, (5.6)] 

P2(n-m)- 1 (Z)Q22(n-m)- (Z) + Q2(n-m)- 1 (Z)P2(n-m)-i (z) 
, 2n-2m-1 + =cz , whereeeR . 

Considering relation (3.4) at the zeros xj -1 < x1 < x2 < ... < x <1, 

of tn (x) and taking into account that by Lemma 2 the zeros of tn (x) and 

rn-I(x) := Im{zf (n)q2(z)P2( q m) (z)}/sin-k, x = 2(z + l/z), Z = e 
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E [0, ir], separate each other, we obtain 

(1)'- it() )(x) > O for j = 1, ..,n, 

which proves the interlacing property of t, and t(l)1 and thus the theorem. 0 

Remark 1. From the general characterization of positive quadrature formulas 
given by the author in [7, Theorem 2] it follows with the help of relation (3.2) 
that the sufficient condition of Theorem 1 is also necessary if 2m < n. 

From Theorem 1 we obtain, using some ideas of Cauchy and Kojima on the 
location of the zeros of polynomials (see [4, ?30, in particular Exercise 6]), the 
following sufficient conditions which are easy to verify. 

Corollary 1. Let n, m E N0, m < n, Ao, gm E R and HO #0. Put 
Ao= I'olI 

2m- 1-2j( 

(3.5) A 2iluj rjK= 
(I + 

la2(n-J-I)-KD1 for jl ,m 

and let j,, E {O, 1, .I. , m}, jO := 0 < j1 <.. < jm* be those indices for which 
Aj # Ofor v= 1, ...,m* and Aj=0for j E {l, I ...m}\{jo, 1 , * I , m*} 

Then each of thefollowing two conditions is sufficient that Emj=O J'jPn-j generates 
a positive (2n - I - m, n, da) quadrature formula: 

(1) EZ=Aj <A.o 
(2) A > 2Aj for v = 0,..., m* - 2 and A > A. 

, v+ Jn -I Itn 

Proof. First let us note that condition (2) implies condition (1). In fact, apply- 
ing successively the inequalities given in (2), we obtain 

m*-1 

A. >A. +A. >A. +A. +A2. . > E A +A 
v=l 

which is condition (1). 
Next we show that condition (1) implies that 

m 

q* (z) 2=j#~ q2m( ) PiZ Q2m-2j, 2(n-j)-lI(Z) A Hj 
j=0 

has all zeros in jz > 1 , which is equivalent to the fact that 
m 

pjZ Q2m -2j, 2(n -j)- I (Z) 
j=0 

has all zeros in Jzl < 1 and proves the corollary. Assume, to the contrary, that 

q2m has a zero 4 in lzl < 1 . Then it follows, using from Lemma 3 the fact 
that Q has no zero in IzI < 1 , that 

m Q ( (4) m m 

(3.6) KAoI = >J.iAj ' j< Ajl <I:A 
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where the first inequality follows with the help of Lemma 3, which is a contra- 
diction to (1). o 

Let us give an illustrative 

Example. Let n, m E No, n > m, and suppose that the parameters a, satisfy 

0 < I/y < 1 - Iaj for v = 2(n - m) - 1,..., 2n - 2. 

Then we get by Corollary 1 that 

Pn ,UmPn-m lml < (2y )-m 

generates a positive (2n - 1 - m, n, du) quadrature formula, where because 
of (2.10) the condition on lIml can be replaced by lj4ml < (2y) m if a is 
odd. In particular, we obtain for the Jacobi weight by a rough estimate of the 
parameters an '/) from (2.11) that 

(a, 
lim 

(a,fl 
Im<2 

3m 
Pn UmPn-m IlLmI<2 

generates a positive (2n - 1 - m, n, (1 - x)a(1 + x)4) quadrature formula 
for each n > m + max{2, a + f, + 1 + 2j1/ - aj}. In the ultraspherical case 
a = 3 = A2- 1/2, A E (-1/2, xc), the conditions on IjUmI, resp. n, can be 

replaced by I,m I< 2-2m and n > m + max{2A, -3A}. 

Let us note in this connection that the conditions of Corollary 1 are in general 
too rough to get the known results (see [1]) on the positivity of (n - 1, n, 
(I - X)a(l + x)4) quadrature formulas generated by p(a,b) , a, b > -1 . But 
this is not surprising because the proof of such results requires very special 
properties of Jacobi polynomials. 

In order to weaken the sufficient conditions of Corollary 1, a better estimate 
for maxI<Q<2 

* 
lQm22(n_j)l(e) )/Qm2nl(e'+)I than that one used in (3.6) 

would be needed. 
In the following, let Tn, resp. Un, denote the Chebyshev polynomial of 

the first, resp. second, kind of degree n and Tn(x) = 2-n+l Tn(x) = x' + **, 

resp. Un (x) = 2-n Un (x) = x' + * - - . For the case of the Chebyshev distribution 

da(x) = (1 _X2) 1/2 dx we get in view of (2.13) particularly simple conditions, 
which hold also for the distribution do(x) = (1 - x2)112 dx. 

Corollary 2. Let n, m E N0, m < n, U0, *** gAm E R, #0 #0, and put 

,ij = 2j zeu for j = 0, . M. , in. Then the following propositions hold: 

(a) Em0 111TO j generates a positive (2n- 1-r, n, (1 -x2["2) quadrature 

formula if ZM0ii1zm1J has all its zeros in the open unit disk jzj < 1. In 
particular (besides conditions (1) and (2) of Corollary 1), the condition 

(3) AUO > A I > ..> Am > u 
is sufficient that Z'j0 u;Tn_; generates a positive (2n - 1 - m, n, ( x1 -X2)12) 

quadrature formula. 
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(b) The sufficient conditions given in (a) (including conditions (1) and (2) of 
Corollary 1 with an = 0 for n E No) are also sufficient for EZ7=j,uU"_j to 

generate a positive (2n - 1 - m, n, (1 - x2)1/2) quadrature formula. 

Proof. (a) The first statement follows immediately from Theorem 1. Since 
by the Kakeya-Enestrom Theorem (see, e.g., [4]) condition (3) implies that 

Ejm=o,uiz -j has all zeros in Izi < 1, part (a) is proved. 
(b) We shall demonstrate, independently from Theorem 1, that EZ J Uj1 

generates a positive (2n - 1 - m, n, (1 -x2)1/2) quadrature formula if EZm7 -0 

zm j has all zeros in lzl < 1, which also implies all other statements of (b). 
Setting 

m 
r(Z) = 

n-m E z 
j=o 

and 
m 

2ntn(x) = Zj Un_j(x) = Im{zrn(z)}/sin b, 
j=o 

we obtain, since, as is well known, the associated polynomial of Uk is Uk_l, 

k E No, that the associated polynomial t1l) of t, with respect to (1 - X2) 1/2 

is of the form 
m 

21tn )- X=EA U_ l_ j(x) = Im{r n(Z)}/ sin + . 
j=O 

Observing that 

(3.7) Re{rn(z)} 
Im zrn(z)} Re{zrn (z)} Im{r(Z)} = rn(z) 12 

we deduce with the help of Lemma 2, by considering relation (3.7) at the n 
zeros of t, , that tn and t(l) have interlacing zeros. In view of Lemma 1 the 
assertion is proved. o 

The sufficiency of condition (3) for the Chebyshev weight (1 - x2) 1/2 is 

due to C. A. Micchelli [5], who derived this result in order to demonstrate 
that the ultraspherical polynomials pkA), 0 < A < 1, generate a positive 
(n - 1, n, (1 - X2) 1/2) quadrature formula. Let us mention in this connec- 
tion (for a different approach see [5]) that for -1/2 < A < 0 the positivity 
can be demonstrated with the help of condition (1), using the simple fact that 
Tk(l) = 1 for k E No. Proceeding similarly as in the proof of Corollary 2(b), 
it could also be demonstrated that Corollary 2(b) holds for the more general 
weight (1 - x)'(1 + x)4, a, ,B E {-1/2, 1/2}, a result which has been given 
by the author in [8, Corollary 2], using different methods. 
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Using the fact that the sufficient condition of Theorem 1 is also necessary if 
2m < n (see Remark 1), we get 

Corollary 3. Let n, m E NO' 2m < n, uO, ..., ,U E R and uO,um E R\{O}. 
For k E {O, ..., m} put A(k) = 2ku and 

2m- 1 -2j( O Il 
A(k) = 2Jlujl HK=O +a2(n(J I)KD for j = 0,..., m, j $ k. 

I - 1IWm- 1-2k (I - la2fklKI 

If there is a k E {l, ... , m} such that Akk)> Zk =OI kA(k), then EM U 
Pn_j does not generate a positive (2n - 1 - m, n, du) quadrature formula. 

Proof. In view of Remark 1 it is sufficient to demonstrate that 
m 

q(z) Pjz1Q+1 = 2# q2m() /j 2m-2j, 2(n-j)-- I(z), 2 a, 
j=0 

has at least one zero in Izl < 1. With the help of Lemma 3 we get on the 
circumference I z = 1 

2m-1-2k 

I/kZkQ2m2k,2(n-k)l(Z)l > lkl 17 (1 - 1a2(n-k-1)K) 
K=o 

m 2m-1-2j 

>Z ItJ 171 (1 + la(fJ)) > LIu I rI (l+l2(n-j- 1)-Kl 
j=O K=O 

j$k 

m 

> ZJLjZ'Q2m 2j, 2(n-j) - (Z) 
j=O 
j#k 

Using the fact that Q2m-2k2(n-k)-1 has no zero in jzj < 1, this implies by 
Rouche's Theorem that q* has k zeros in lzl < 1, which proves the asser- 
tion. 5 

If one is interested only in such linear combinations of orthogonal polyno- 
mials whose zeros are simple and are in (-1, +1), conditions (1) and (2) can 
be weakened in the following way. 

Theorem 2. Let n, m E No m n, < 0 n g m E R and MuO 5 O. Put 

oB0 = o 
2n-2 

Bj =2'lyjul/ (I -'la KI) for j=1..,m, 

K=2(n-j)- 1 

and let j E {O, 1 ... I M}, m} 0 < ? < .. < jm* be those indicesfor which 
B. 54 0 for , = I, ... m and B = 0 for jE {1, m}\{ jo, i, **jm*}- 

Tv 
Then each of the following two conditions is suffiicient that EJm=O,lp_ has n 



LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS 241 

simple zeros in (-1, 1): 

(1') 2LIBJ <B0. 
(2') B? > 2Bj for v=O,...,m* -l and B.j* > Bj*. 

Proof. Since by (2.7) 

m (m 

E jpn (x) = 2-n+l Re i j Jz JP2(n-j)-1(Z)} 
j=o J=o 

where ,j = 2jzu;, we deduce with the help of Lemma 2 that EmL j,l 1 (x) 

has n simple zeros in (-1, +1) if EZm PiJz' P*j)1 has all zeros in jz > 1 . 
Observing that by relation (26.5) of [3] 

max 2(n)* I < for] =1,..., m, 
IzIhe P2set(Z) - K=2on-j)_t(l - Ia KI) 

the assertion can be proved in the same way as Corollary 1. o 
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