LINEAR COMBINATIONS OF ORTHOGONAL POLYNOMIALS GENERATING POSITIVE QUADRATURE FORMULAS

FRANZ PEHERSTORFER

ABSTRACT. Let $p_k(x) = x^k + \cdots$, $k \in \mathbb{N}_0$, be the polynomials orthogonal on [-1, +1] with respect to the positive measure $d\sigma$. We give sufficient conditions on the real numbers μ_j , $j = 0, \ldots, m$, such that the linear combination of orthogonal polynomials $\sum_{j=0}^{m} \mu_j p_{n-j}$ has n simple zeros in (-1, +1) and that the interpolatory quadrature formula whose nodes are the zeros of $\sum_{j=0}^{m} \mu_j p_{n-j}$ has positive weights.

1. INTRODUCTION

Let σ be a positive measure on [-1, 1] such that the support of $d\sigma$ contains an infinite set of points. In this paper we consider interpolatory quadrature formulas with positive weights, i.e., quadrature formulas of the form

(1.1)
$$\int_{-1}^{+1} f(x) \, d\sigma(x) = \sum_{j=1}^{n} c_j f(x_j) + R_n(f) \,,$$

where $-1 < x_1 < x_2 < \cdots < x_n < 1$, $c_j > 0$ for $j = 1, \ldots, n$, and $R_n(f) = 0$ for $f \in \mathbf{P}_{2n-1-m}$, $0 \le m \le n$ (\mathbf{P}_n denotes as usual the set of polynomials of degree at most n). As in [6], such a quadrature formula is called a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula. If σ is absolutely continuous on [-1, 1], with $\sigma'(x) = w(x)$, we write also (2n - 1 - m, n, w) instead of $(2n - 1 - m, n, d\sigma)$. Furthermore, we say that a polynomial $t_n \in \mathbf{P}_n$ generates a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula if t_n has n simple zeros $x_1 < x_2 < \cdots < x_n$ in (-1, +1) and the interpolatory quadrature formula based on the nodes x_j is a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula. Since the degree of exactness is 2n - 1 - m, $n, d\sigma$) quadrature formula. Since the degree of exactness is 2n - 1 - m, we get with the help of (1.1)the well-known fact that such a polynomial t_n is orthogonal to \mathbf{P}_{n-1-m} with respect to $d\sigma$, and hence is of the form

(1.2)
$$t_n(x) = \sum_{j=0}^m \mu_j p_{n-j}(x),$$

Received January 11, 1989.

© 1990 American Mathematical Society 0025-5718/90 \$1.00 + \$.25 per page

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 65D30; Secondary 33A65. Key words and phrases. Quadrature formula, positive weights, orthogonal polynomials, zeros.

FRANZ PEHERSTORFER

where $\mu_j \in \mathbf{R}$ and $p_k(x) = x^k + \cdots$, $k \in \mathbf{N}_0$, denotes the polynomial of degree k orthogonal with respect to $d\sigma$. For that reason we are interested in conditions on the numbers μ_j such that t_n generates a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula. For small m, m = 1, 2, 3, necessary and sufficient conditions on the numbers μ_j can be obtained from the general characterizations of positive quadrature formulas given by the author in [7, 8] (see in particular [8, Theorem 2(b)]), by Sottas and Wanner [10] (note that the conditions given there do not imply that the nodes are in (-1, +1)), and recently by H. J. Schmid [9]. But for larger m the computational work increases rapidly, and the conditions become very complex (see the examples given in [9, 10]). Thus, the problem arises to find "simple and applicable" sufficient conditions on the numbers μ_j such that $\sum_{j=0}^m \mu_j p_{n-j}$ generates a positive $(2n-1-m, n, d\sigma)$ quadrature formula. This problem is studied and partly solved in this paper by giving first a general sufficient condition on the μ_j 's, from which simpler conditions are derived.

2. PRELIMINARY RESULTS

In order to state our results, we need some known facts on polynomials orthogonal on [-1, 1], resp. orthogonal on the circumference of the unit circle |z| = 1. Let us recall that the polynomials $p_n = x^n + \cdots$, $n \in \mathbb{N}$, orthogonal with respect to $d\sigma$ on [-1, +1] satisfy a recurrence relation of the form

(2.1)
$$p_n(x) = (x - \alpha_n)p_{n-1}(x) - \lambda_n p_{n-2}(x)$$
 for $n \in \mathbb{N}$,

where $p_{-1} = 0$, $p_0 = 1$, $\alpha_n \in (-1, +1)$ for $n \in \mathbb{N}$, and $\lambda_n > 0$ for $n \ge 2$. $p_n^{(1)}$, $n \in \mathbb{N}_0$, denotes the so-called associated polynomial, defined by

(2.2)
$$p_n^{(1)}(x) = \frac{1}{d_0} \int_{-1}^{+1} \frac{p_{n+1}(x) - p_{n+1}(t)}{x - t} \, d\sigma(t) \, ,$$

where $d_0 = \int_{-1}^{+1} d\sigma(t)$. Note that the $p_n^{(1)}$'s are polynomials of degree *n* with leading coefficient one, which satisfy the following recurrence relation (see e.g. [2, Chapter 3, §4])

(2.3)
$$p_n^{(1)}(x) = (x - \alpha_{n+1})p_{n-1}^{(1)}(x) - \lambda_{n+1}p_{n-2}^{(1)}(x)$$
 for $n \in \mathbb{N}$,
where the α 's and λ 's are determined by (2.1)

where the α_n 's and λ_n 's are determined by (2.1).

We are now ready to state the first simple characterization of positive quadrature formulas.

Lemma 1. Let $n, m \in \mathbf{N}_0$, $n \ge m$, and let $\mu_j \in \mathbf{R}$ for j = 0, ..., m, $\mu_0 \ne 0$. Then $\sum_{j=0}^{m} \mu_j p_{n-j}$ generates a positive $(2n-1-m, n, d\sigma)$ quadrature formula if and only if $\sum_{j=0}^{m} \mu_j p_{n-j}$ has n simple zeros in (-1, +1) and the zeros of $\sum_{j=0}^{m} \mu_j p_{n-j}$ and $\sum_{j=0}^{m} \mu_j p_{n-1-j}^{(1)}$ separate each other. Proof. Setting

$$t_n = \sum_{j=0}^m \mu_j p_{n-j}$$
 and $t_{n-1}^{(1)} = \sum_{j=0}^m \mu_j p_{n-1-j}^{(1)}$,

we get for the weights c_i , using relation (2.2),

$$c_j = \int_{-1}^{+1} \frac{t_n(x)}{(x-x_j)t'_n(x_j)} \, d\sigma(x) = d_0 \frac{t_{n-1}^{(1)}(x_j)}{t'_n(x_j)} \quad \text{for } j = 1, \dots, n \, .$$

Hence the conditions $c_j > 0$ for j = 1, ..., n are equivalent to the interlacing property of the zeros of t_n and $t_{n-1}^{(1)}$. \Box

Next, denote by $P_n(z) = z^n + \cdots$, $n \in \mathbb{N}_0$, the polynomial orthogonal on $[0, 2\pi]$ with respect to the positive measure

(2.4)
$$\psi(\phi) = \begin{cases} -\sigma(\cos\phi) & \text{for } \phi \in [0, \pi], \\ \sigma(\cos\phi) & \text{for } \phi \in (\pi, 2\pi] \end{cases}$$

i.e.,

$$\int_0^{2\pi} e^{-ik\phi} P_n(e^{i\phi}) \, d\psi(\phi) = 0 \quad \text{for } k = 0, \dots, n-1 \, .$$

Note if σ is absolutely continuous on [-1, +1] and $\sigma'(x) = w(x)$, then ψ is absolutely continuous with $\psi'(\phi) = w(\cos \phi) |\sin \phi|$ for $\phi \in [0, 2\pi]$. It is well known (polynomials orthogonal on the unit circle are studied extensively in [3]) that the P_n 's satisfy a recurrence relation of the type

(2.5)
$$P_n(z) = z P_{n-1}(z) - a_{n-1} P_{n-1}^*(z) \text{ for } n \in \mathbb{N},$$

where $a_n \in (-1, +1)$ for $n \in \mathbb{N}_0$, and where $P_n^*(z) = z^n P_n(z^{-1})$ denotes the reciprocal polynomial of P_n . The reason that the parameters a_n are real and have absolute value less than one consists in the facts that ψ is odd with respect to π and that ψ has an infinite set of points of increase (see [3, p. 5]). Furthermore, let $\Omega_n(z) = z^n + \cdots$ be defined by the recurrence relation

(2.6)
$$\Omega_n(z) = z\Omega_{n-1}(z) + a_{n-1}\Omega_{n-1}^*(z) \text{ for } n \in \mathbb{N}.$$

 Ω_n is called the associated polynomial of P_n . It is well known that both polynomials P_n and Ω_n , $n \ge 1$, have all their zeros in the open unit disk |z| < 1. The following relations hold between polynomials p_n orthogonal on [-1, 1] with respect to $d\sigma$ and polynomials P_n :

(2.7)
$$p_n(x) = 2^{-n+1} \operatorname{Re}\{z^{-n+1}P_{2n-1}(z)\},$$

(2.8)
$$p_{n-1}^{(1)}(x) = 2^{-n+1} \operatorname{Im} \{z^{-n+1} \Omega_{2n-1}(z)\} / \sin \phi$$

where $x = \frac{1}{2}(z + z^{-1})$, $z = e^{i\phi}$, $\phi \in [0, \pi]$. The parameters (a_n) are given by [3, (31.4)]

(2.9)
$$a_{2n-1} = 1 - (u_n + v_n)$$
 and $a_{2n} = \frac{v_n - u_n}{v_n + u_n}$,

where

$$u_n = \frac{p_{n+1}(1)}{p_n(1)}$$
 and $v_n = -\frac{p_{n+1}(-1)}{p_n(-1)}$.

Moreover,

(2.10)
$$a_{2n} = 0$$
 for $n \in \mathbb{N}_0$, if $\sigma(x) = -\sigma(-x)$ a.e. on $[-1, 1]$.

For example, we obtain for the Jacobi polynomials $p_n^{(\alpha,\beta)}(x) = x^n + \cdots$ which are orthogonal on [-1, 1] with respect to the weight function $w^{(\alpha,\beta)}(x) = (1-x)^{\alpha}(1+x)^{\beta}$, $\alpha, \beta > -1$, that the corresponding parameters $a_n^{(\alpha,\beta)}$ appearing in the recurrence relation of $P_n^{(\alpha,\beta)}(z) = z^n + \cdots$ are given by

(2.11)
$$a_{2n+1}^{(\alpha,\beta)} = -\frac{\alpha+\beta+1}{\alpha+\beta+2n+3}, \quad a_{2n}^{(\alpha,\beta)} = \frac{\beta-\alpha}{\alpha+\beta+n+2} \text{ for } n \in \mathbb{N}_0.$$

Hence we get for the ultraspherical case $p_n^{(\lambda)}(x) := p_n^{(\lambda-1/2, \lambda-1/2)}(x)$ and $w^{(\lambda)}(x) = (1-x^2)^{\lambda-1/2}$ that

(2.12)
$$a_{2n+1}^{(\lambda)} = -\frac{\lambda}{n+1+\lambda} \quad \text{and} \quad a_{2n}^{(\lambda)} = 0 \quad \text{for } n \in \mathbb{N}_0,$$

and in particular for the Chebyshev case, i.e., for the case where $\lambda = 0$ and $w(x) = (1 - x^2)^{-1/2}$, that

(2.13)
$$a_n = 0 \text{ for } n \in \mathbb{N}_0, \qquad \Omega_n(z) = P_n(z) = z^n \text{ for } n \in \mathbb{N}_0.$$

Finally, we shall need

Lemma 2. Let $n \in \mathbb{N}$ and $l \in \mathbb{Z}$ with $2|l| \le n$. Assume that the real polynomial $t_n(z) = z^n + \cdots$ has all its zeros in the open unit disk |z| < 1. Then the cosine-polynomial $\operatorname{Re}\{z^{-l}t_n(z)\}$, resp. the sine-polynomial $\operatorname{Im}\{z^{-l}t_n(z)\}$, $z = e^{i\phi}$, $\phi \in [0, \pi]$, has n - l zeros ϕ_j in $(0, \pi)$, resp. n - l - 1 zeros ψ_j in $(0, \pi)$, and their zeros separate each other, i.e. $0 < \phi_1 < \psi_1 < \phi_2 < \cdots < \psi_{n-l-1} < \phi_{n-l} < \pi$.

Proof. Since $\operatorname{Re}\{z^{-l}t_n(z)\}$ (respectively $\operatorname{Im}\{z^{-l}t_n(z)\}$) is zero at $z = e^{i\phi}$, $\phi \in (0, 2\pi)$, if and only if

$$z^{-2l} \frac{t_n(z)}{t_n(z)} = -1 \quad (\text{respectively} + 1),$$

which is equivalent to

$$\arg z^{n-2l} + \arg \frac{t_n(z)}{t_n^*(z)} = (2k-1)\pi \quad (\text{respectively } 2k\pi),$$

 $k \in \mathbf{N}_0$, we get, taking into consideration the fact that $\arg t_n(e^{i\phi})/t_n^*(e^{i\phi})$ increases from 0 to $2n\pi$ if ϕ varies from 0 to 2π , that both $\operatorname{Re}\{z^{-l}t_n(z)\}$ and $\operatorname{Im}\{z^{-l}t_n(z)\}$ have 2(n-l) zeros in $[0, 2\pi)$ and that their zeros separate each other. Observing that $\operatorname{Im}\{z^{-l}t_n(z)\}$ has a zero at $\phi = 0$ and $\phi = \pi$, the assertion follows by the symmetry of trigonometric polynomials. \Box

3. MAIN RESULTS

First, let us introduce the following polynomials, which play a crucial role in this paper.

Definition. For given $n \in \mathbb{N}$ let the polynomials $Q_{\nu,2n-1}(z) = z^{\nu} + \cdots$, $\nu \in \{0, \ldots, 2n-1\}$, be defined by the recurrence relation

(3.1)
$$Q_{\nu,2n-1}(z) = zQ_{\nu-1,2n-1}(z) - a_{2n-1-\nu}Q_{\nu-1,2n-1}^{*}$$
for $\nu = 1, ..., 2n-1$

where $Q_{0,2n-1} = 1$ and the $a_{2n-1-\nu}$'s are the parameters appearing in the recurrence relation (2.5) of the P_n 's.

The polynomials $Q_{\nu,2n-1}$ have the following important properties.

Lemma 3. Let $n \in \mathbb{N}$. The following propositions hold:

(a) $\prod_{\kappa=0}^{\nu-1} (1 - |a_{2n-2-\kappa}|) \le |Q_{\nu,2n-1}^{*}(z)| \le \prod_{\kappa=0}^{\nu-1} (1 + |a_{2n-2-\kappa}|)$ for $|z| \le 1$, where $\nu \in \{0, ..., 2n-1\}$. Moreover, $Q_{\nu,2n-1}$ has all zeros in |z| < 1.

(b) Let $\nu \in \{0, ..., n-1\}$; then $(z = e^{i\phi}, x = \cos\phi, \phi \in [0, \pi])$

$$p_n(x) = 2^{-n+1} \operatorname{Re} \{ z^{-n+1} Q_{2\nu, 2n-1}(z) P_{2(n-\nu)-1}(z) \}$$

and

$$p_{n-1}^{(1)}(x) = 2^{-n+1} \operatorname{Im} \{ z^{-n+1} Q_{2\nu, 2n-1}(z) \Omega_{2(n-\nu)-1}(z) \} / \sin \phi$$

Proof. (a) follows immediately from (3.1) and [3, (26.6)].

(b) We first note that the recurrence relations (2.5), resp. (3.1), imply (see [3, (3.6)]) that

(2.5')
$$P_n^*(z) = P_{n-1}^*(z) - a_{n-1}zP_{n-1}(z) \text{ for } n \in \mathbb{N},$$

and

(3.1')
$$Q_{\nu,2n-1}^{*}(z) = Q_{\nu-1,2n-1}^{*}(z) - a_{2n-1-\nu}zQ_{\nu-1,2n-1}(z)$$
for $\nu = 1, ..., 2n-1$.

With the help of all these recurrence relations it follows by induction arguments that

$$zP_{2n-1}(z) + P_{2n-1}^{*}(z) = zQ_{\nu,2n-1}(z)P_{2n-1-\nu}(z) + Q_{\nu,2n-1}^{*}(z)P_{2n-1-\nu}^{*}(z),$$

which, in view of (2.7) and taking into consideration the fact that for $z = e^{i\phi}$

$$2\operatorname{Re}\{z^{-n+1}P_{2n-1}(z)\} = z^{-n}(zP_{2n-1}(z) + P_{2n-1}^{*}(z)),$$

gives the first relation.

Analogously as above, one demonstrates that

$$z\Omega_{2n-1}(z) - \Omega_{2n-1}^{*}(z) = zQ_{\nu,2n-1}(z)\Omega_{2n-1-\nu}(z) - Q_{\nu,2n-1}^{*}(z)\Omega_{2n-1-\nu}^{*}(z),$$

which in conjunction with (2.8) gives the second relation. \Box

The main result is now the following

Theorem 1. Let $n, m \in \mathbb{N}_0$, $m \le n, \mu_0, \dots, \mu_m \in \mathbb{R}$ and $\mu_0 \ne 0$. Then $\sum_{j=0}^m \mu_j p_{n-j}$ generates a positive $(2n-1-m, n, d\sigma)$ quadrature formula if $\sum_{j=0}^m \tilde{\mu}_j z^j Q_{2m-2j,2(n-j)-1}(z)$, where $\tilde{\mu}_j = 2^j \mu_j$, has all its zeros in the open unit disk |z| < 1.

Proof. Putting

$$t_n(x) = \sum_{j=0}^m \mu_j p_{n-j}(x)$$
 and $t_{n-1}^{(1)}(x) = \sum_{j=0}^m \mu_j p_{n-1-j}^{(1)}(x)$,

we get with the help of Lemma 3(b) that $(z = e^{i\phi}, x = \cos\phi, \phi \in [0, \pi])$

(3.2)
$$t_n(x) = 2^{-n+1} \operatorname{Re} \{ z^{-m} q_{2m}(z) z^{-(n-m)+1} P_{2(n-m)-1}(z) \}$$

and

$$t_{n-1}^{(1)}(x) = 2^{-n+1} \operatorname{Im} \{ z^{-m} q_{2m}(z) z^{-(n-m)+1} \Omega_{2(n-m)-1}(z) \} / \sin \phi ,$$

where

(3.3)
$$q_{2m}(z) = \sum_{j=0}^{m} \tilde{\mu}_j z^j Q_{2m-2j,2(n-j)-1}(z).$$

Assume now that q_{2m} has all its zeros in |z| < 1. Since the same is true for $P_{2(n-m)-1}$, it follows from Lemma 2 that t_n has n simple zeros in (-1, +1). Thus, by Lemma 1, it remains to demonstrate that the zeros of t_n and $t_{n-1}^{(1)}$ separate each other.

Using the relation

$$\operatorname{Re} a \operatorname{Re} b + \operatorname{Im} a \operatorname{Im} b = \operatorname{Re} \{ a \overline{b} \},$$

where $a, b \in \mathbb{C}$, we get for $z = e^{i\phi}$

(3.4)

$$\operatorname{Re}\left\{z^{-(n-1)}q_{2m}(z)P_{2(n-m)-1}(z)\right\}\operatorname{Re}\left\{z^{-(n-1)}q_{2m}(z)\Omega_{2(n-m)-1}(z)\right\}$$

$$=\operatorname{Im}\left\{z^{-(n-1)}q_{2m}(z)P_{2(n-m)-1}(z)\right\}\operatorname{Im}\left\{z^{-(n-1)}q_{2m}(z)\Omega_{2(n-m)-1}(z)\right\}$$

$$=\left|q_{2m}(z)\right|^{2}\operatorname{Re}\left\{P_{2(n-m)-1}(z)\overline{\Omega_{2(n-m)-1}(z)}\right\}$$

$$=c\left|q_{2m}(z)\right|^{2}, \quad c \in \mathbf{R}^{+},$$

where the last equality follows from the known relation [3, (5.6)]

$$P_{2(n-m)-1}(z)\Omega^*_{2(n-m)-1}(z) + \Omega_{2(n-m)-1}(z)P^*_{2(n-m)-1}(z)$$

= $\tilde{c}z^{2n-2m-1}$, where $\tilde{c} \in \mathbf{R}^+$.

Considering relation (3.4) at the zeros x_j , $-1 < x_1 < x_2 < \cdots < x_n < 1$, of $t_n(x)$ and taking into account that by Lemma 2 the zeros of $t_n(x)$ and $r_{n-1}(x) := \operatorname{Im}\{z^{-(n-1)}q_{2m}(z)P_{2(n-m)-1}(z)\}/\sin\phi$, $x = \frac{1}{2}(z+1/z)$, $z = e^{i\phi}$,

 $\phi \in [0, \pi]$, separate each other, we obtain

$$(-1)^{n-j} t_{n-1}^{(1)}(x_j) > 0 \text{ for } j = 1, \dots, n,$$

which proves the interlacing property of t_n and $t_{n-1}^{(1)}$ and thus the theorem. \Box

Remark 1. From the general characterization of positive quadrature formulas given by the author in [7, Theorem 2] it follows with the help of relation (3.2) that the sufficient condition of Theorem 1 is also necessary if $2m \le n$.

From Theorem 1 we obtain, using some ideas of Cauchy and Kojima on the location of the zeros of polynomials (see [4, §30, in particular Exercise 6]), the following sufficient conditions which are easy to verify.

Corollary 1. Let $n, m \in \mathbb{N}_0$, $m \le n, \mu_0, \dots, \mu_m \in \mathbb{R}$ and $\mu_0 \ne 0$. Put $A_0 = |\mu_0|$,

(3.5)
$$A_{j} = 2^{j} |\mu_{j}| \frac{\prod_{\kappa=0}^{2m-1-2j} (1+|a_{2(n-j-1)-\kappa}|)}{\prod_{\kappa=0}^{2m-1} (1-|a_{2(n-1)-\kappa}|)} \quad \text{for } j = 1, \dots, m,$$

and let $j_{\nu} \in \{0, 1, ..., m\}$, $j_0 := 0 < j_1 < \cdots < j_{m^*}$ be those indices for which $A_{j_{\nu}} \neq 0$ for $\nu = 1, ..., m^*$ and $A_j = 0$ for $j \in \{1, ..., m\} \setminus \{j_0, j_1, ..., j_{m^*}\}$. Then each of the following two conditions is sufficient that $\sum_{j=0}^{m} \mu_j p_{n-j}$ generates a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula:

(1) $\sum_{\nu=1}^{m^*} A_{j_{\nu}} < A_0$. (2) $A_{j_{\nu}} \ge 2A_{j_{\nu+1}}$ for $\nu = 0, ..., m^* - 2$ and $A_{j_{m^*-1}} > A_{j_{m^*}}$.

Proof. First let us note that condition (2) implies condition (1). In fact, applying successively the inequalities given in (2), we obtain

$$A_{j_0} \ge A_{j_1} + A_{j_1} \ge A_{j_1} + A_{j_2} + A_{j_2} \ge \dots > \sum_{\nu=1}^{m^*-1} A_{j_\nu} + A_{j_{m^*}},$$

which is condition (1).

Next we show that condition (1) implies that

$$q_{2m}^{*}(z) := \sum_{j=0}^{m} \tilde{\mu}_{j} z^{j} Q_{2m-2j,2(n-j)-1}^{*}(z), \qquad \tilde{\mu}_{j} = 2^{j} \mu_{j},$$

has all zeros in |z| > 1, which is equivalent to the fact that

$$\sum_{j=0}^{m} \tilde{\mu}_{j} z^{j} Q_{2m-2j, 2(n-j)-1}(z)$$

has all zeros in |z| < 1 and proves the corollary. Assume, to the contrary, that q_{2m}^* has a zero ζ in $|z| \le 1$. Then it follows, using from Lemma 3 the fact that $Q_{2m,2n-1}^*$ has no zero in $|z| \le 1$, that

(3.6)
$$|\mu_0| = \left| \sum_{j=1}^m \tilde{\mu}_j \zeta^j \frac{Q_{2m-2j,2(n-j)-1}^*(\zeta)}{Q_{2m,2n-1}^*(\zeta)} \right| \le \sum_{j=1}^m A_j |\zeta|^j \le \sum_{j=1}^m A_j,$$

where the first inequality follows with the help of Lemma 3, which is a contradiction to (1). \Box

Let us give an illustrative

Example. Let $n, m \in \mathbb{N}_0$, n > m, and suppose that the parameters a_{ν} satisfy

$$0 < 1/\gamma \le 1 - |a_{\nu}|$$
 for $\nu = 2(n-m) - 1, \dots, 2n-2$.

Then we get by Corollary 1 that

$$p_n - \mu_m p_{n-m}, \qquad |\mu_m| < (2\gamma^2)^{-m},$$

generates a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula, where because of (2.10) the condition on $|\mu_m|$ can be replaced by $|\mu_m| < (2\gamma)^{-m}$ if σ is odd. In particular, we obtain for the Jacobi weight by a rough estimate of the parameters $a_n^{(\alpha,\beta)}$ from (2.11) that

$$p_n^{(\alpha,\beta)} - \mu_m p_{n-m}^{(\alpha,\beta)}, \qquad |\mu_m| < 2^{-3m},$$

generates a positive $(2n - 1 - m, n, (1 - x)^{\alpha}(1 + x)^{\beta})$ quadrature formula for each $n \ge m + \max\{2, \alpha + \beta + 1 + 2|\beta - \alpha|\}$. In the ultraspherical case $\alpha = \beta = \lambda - 1/2, \ \lambda \in (-1/2, \infty)$, the conditions on $|\mu_m|$, resp. *n*, can be replaced by $|\mu_m| < 2^{-2m}$ and $n \ge m + \max\{\lambda, -3\lambda\}$.

Let us note in this connection that the conditions of Corollary 1 are in general too rough to get the known results (see [1]) on the positivity of $(n-1, n, (1-x)^{\alpha}(1+x)^{\beta})$ quadrature formulas generated by $p_n^{(a,b)}$, a, b > -1. But this is not surprising because the proof of such results requires very special properties of Jacobi polynomials.

In order to weaken the sufficient conditions of Corollary 1, a better estimate for $\max_{0 \le \phi \le 2\pi} |Q_{2m-2j,2(n-j)-1}^*(e^{i\phi})/Q_{2m,2n-1}^*(e^{i\phi})|$ than that one used in (3.6) would be needed.

In the following, let T_n , resp. U_n , denote the Chebyshev polynomial of the first, resp. second, kind of degree n and $\hat{T}_n(x) = 2^{-n+1}T_n(x) = x^n + \cdots$, resp. $\hat{U}_n(x) = 2^{-n}U_n(x) = x^n + \cdots$. For the case of the Chebyshev distribution $d\sigma(x) = (1-x^2)^{-1/2} dx$ we get in view of (2.13) particularly simple conditions, which hold also for the distribution $d\sigma(x) = (1-x^2)^{1/2} dx$.

Corollary 2. Let $n, m \in \mathbb{N}_0$, $m \le n, \mu_0, \ldots, \mu_m \in \mathbb{R}$, $\mu_0 \ne 0$, and put $\tilde{\mu}_j = 2^j \mu_j$ for $j = 0, \ldots, m$. Then the following propositions hold:

(a) $\sum_{j=0}^{m} \mu_j \widehat{T}_{n-j}$ generates a positive $(2n-1-m, n, (1-x^2)^{-1/2})$ quadrature formula if $\sum_{j=0}^{m} \tilde{\mu}_j z^{m-j}$ has all its zeros in the open unit disk |z| < 1. In particular (besides conditions (1) and (2) of Corollary 1), the condition

(3) $\tilde{\mu}_0 > \tilde{\mu}_1 > \cdots > \tilde{\mu}_m > 0$ is sufficient that $\sum_{j=0}^m \mu_j \hat{T}_{n-j}$ generates a positive $(2n-1-m, n, (1-x^2)^{-1/2})$ quadrature formula.

238

(b) The sufficient conditions given in (a) (including conditions (1) and (2) of Corollary 1 with $a_n = 0$ for $n \in \mathbb{N}_0$) are also sufficient for $\sum_{j=0}^m \mu_j \hat{U}_{n-j}$ to generate a positive $(2n - 1 - m, n, (1 - x^2)^{1/2})$ quadrature formula.

Proof. (a) The first statement follows immediately from Theorem 1. Since by the Kakeya-Eneström Theorem (see, e.g., [4]) condition (3) implies that $\sum_{i=0}^{m} \tilde{\mu}_i z^{m-j}$ has all zeros in |z| < 1, part (a) is proved.

(b) We shall demonstrate, independently from Theorem 1, that $\sum_{j=0}^{m} \mu_j \hat{U}_{n-j}$ generates a positive $(2n-1-m, n, (1-x^2)^{1/2})$ quadrature formula if $\sum_{j=0}^{m} \tilde{\mu}_j$. z^{m-j} has all zeros in |z| < 1, which also implies all other statements of (b). Setting

$$r_n(z) = z^{n-m} \sum_{j=0}^m \tilde{\mu}_j z^j$$

and

$$2^{n} t_{n}(x) = \sum_{j=0}^{m} \tilde{\mu}_{j} U_{n-j}(x) = \operatorname{Im}\{zr_{n}(z)\}/\sin\phi,$$

we obtain, since, as is well known, the associated polynomial of \hat{U}_k is \hat{U}_{k-1} , $k \in \mathbb{N}_0$, that the associated polynomial $t_{n-1}^{(1)}$ of t_n with respect to $(1-x^2)^{1/2}$ is of the form

$$2^{n-1}t_{n-1}^{(1)}(x) = \sum_{j=0}^{m} \tilde{\mu}_j U_{n-1-j}(x) = \operatorname{Im}\{r_n(z)\}/\sin\phi.$$

Observing that

(3.7)
$$\operatorname{Re}\{r_n(z)\}\frac{\operatorname{Im}\{zr_n(z)\}}{\sin\phi} - \operatorname{Re}\{zr_n(z)\}\frac{\operatorname{Im}\{r_n(z)\}}{\sin\phi} = |r_n(z)|^2,$$

we deduce with the help of Lemma 2, by considering relation (3.7) at the *n* zeros of t_n , that t_n and $t_{n-1}^{(1)}$ have interlacing zeros. In view of Lemma 1 the assertion is proved. \Box

The sufficiency of condition (3) for the Chebyshev weight $(1 - x^2)^{-1/2}$ is due to C. A. Micchelli [5], who derived this result in order to demonstrate that the ultraspherical polynomials $p_n^{(\lambda)}$, $0 \le \lambda < 1$, generate a positive $(n - 1, n, (1 - x^2)^{-1/2})$ quadrature formula. Let us mention in this connection (for a different approach see [5]) that for $-1/2 < \lambda \le 0$ the positivity can be demonstrated with the help of condition (1), using the simple fact that $T_k(1) = 1$ for $k \in \mathbb{N}_0$. Proceeding similarly as in the proof of Corollary 2(b), it could also be demonstrated that Corollary 2(b) holds for the more general weight $(1 - x)^{\alpha}(1 + x)^{\beta}$, $\alpha, \beta \in \{-1/2, 1/2\}$, a result which has been given by the author in [8, Corollary 2], using different methods. Using the fact that the sufficient condition of Theorem 1 is also necessary if $2m \le n$ (see Remark 1), we get

Corollary 3. Let $n, m \in \mathbb{N}_0$, $2m \le n, \mu_0, \dots, \mu_m \in \mathbb{R}$ and $\mu_0, \mu_m \in \mathbb{R} \setminus \{0\}$. For $k \in \{0, \dots, m\}$ put $A_k^{(k)} = 2^k |\mu_k|$ and

$$A_{j}^{(k)} = 2^{j} |\mu_{j}| \frac{\prod_{\kappa=0}^{2m-1-2j} (1+|a_{2(n-j-1)-\kappa}|)}{\prod_{\kappa=0}^{2m-1-2k} (1-|a_{2(n-k-1)-\kappa}|)} \quad for \ j=0, \ldots, m, \ j \neq k$$

If there is a $k \in \{1, ..., m\}$ such that $A_k^{(k)} > \sum_{j=0, j \neq k}^m A_j^{(k)}$, then $\sum_{j=0}^m \mu_j \cdot p_{n-j}$ does not generate a positive $(2n - 1 - m, n, d\sigma)$ quadrature formula. *Proof.* In view of Remark 1 it is sufficient to demonstrate that

$$q_{2m}^{*}(z) := \sum_{j=0}^{m} \tilde{\mu}_{j} z^{j} Q_{2m-2j,2(n-j)-1}^{*}(z), \qquad \tilde{\mu}_{j} = 2^{j} \mu_{j},$$

has at least one zero in |z| < 1. With the help of Lemma 3 we get on the circumference |z| = 1

$$\begin{split} |\tilde{\mu}_{k} z^{k} Q_{2m-2k,2(n-k)-1}^{*}(z)| &\geq |\tilde{\mu}_{k}| \prod_{\kappa=0}^{2m-1-2k} (1 - |a_{2(n-k-1)-\kappa}|) \\ &> \sum_{\substack{j=0\\j \neq k}}^{m} |\tilde{\mu}_{j}| \prod_{\kappa=0}^{2m-1-2j} (1 + |a_{2(n-j-1)-\kappa}|) \\ &\geq \left| \sum_{\substack{j=0\\j \neq k}}^{m} \tilde{\mu}_{j} z^{j} Q_{2m-2j,2(n-j)-1}^{*}(z) \right|. \end{split}$$

Using the fact that $Q_{2m-2k,2(n-k)-1}^*$ has no zero in |z| < 1, this implies by Rouché's Theorem that q_{2m}^* has k zeros in |z| < 1, which proves the assertion. \Box

If one is interested only in such linear combinations of orthogonal polynomials whose zeros are simple and are in (-1, +1), conditions (1) and (2) can be weakened in the following way.

Theorem 2. Let $n, m \in \mathbb{N}_0$, $m \le n, \mu_0, \dots, \mu_m \in \mathbb{R}$ and $\mu_0 \ne 0$. Put $|B_0| = \mu_0$,

$$B_j = 2^j |\mu_j| / \prod_{\kappa=2(n-j)-1}^{2n-2} (1-|a_{\kappa}|) \quad for \ j=1, \ldots, m,$$

and let $j_{\nu} \in \{0, 1, ..., m\}$, $j_0 := 0 < j_1 < \cdots < j_{m^*}$ be those indices for which $B_{j_{\nu}} \neq 0$ for $\nu = 1, ..., m^*$ and $B_j = 0$ for $j \in \{1, ..., m\} \setminus \{j_0, j_1, ..., j_{m^*}\}$. Then each of the following two conditions is sufficient that $\sum_{i=0}^{m} \mu_i p_{n-i}$ has n simple zeros in (-1, 1):

 $\begin{array}{l} (1') \quad \sum_{\nu=1}^{m^*} B_{j_{\nu}} < B_0. \\ (2') \quad B_{j_{\nu}} \ge 2B_{j_{\nu+1}} \quad for \ \nu = 0, \ldots, \ m^* - 1 \quad and \ B_{j_{m^*-1}} > B_{j_{m^*}}. \end{array}$

Proof. Since by (2.7)

$$\sum_{j=0}^{m} \mu_j p_{n-j}(x) = 2^{-n+1} \operatorname{Re} \left\{ \sum_{j=0}^{m} \tilde{\mu}_j z^j P_{2(n-j)-1}(z) \right\} ,$$

where $\tilde{\mu}_j = 2^j \mu_j$, we deduce with the help of Lemma 2 that $\sum_{j=0}^m \mu_j p_{n-j}(x)$ has *n* simple zeros in (-1, +1) if $\sum_{j=0}^m \mu_j z^j P_{2(n-j)-1}^*$ has all zeros in |z| > 1. Observing that by relation (26.5) of [3]

$$\max_{|z| \le 1} \left| \frac{P_{2(n-j)-1}^*(z)}{P_{2n-1}^*(z)} \right| \le \frac{1}{\prod_{\kappa=2(n-j)-1}^{2n-2} (1-|a_{\kappa}|)} \quad \text{for } j = 1, \dots, m,$$

the assertion can be proved in the same way as Corollary 1. \Box

BIBLIOGRAPHY

- R. Askey, *Positive quadrature methods and positive polynomial sums*, Approximation Theory. V (C. K. Chui, L. L. Schumaker, and J. D. Ward, eds.), Academic Press, New York, 1986, pp. 1–30.
- 2. T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978.
- Ja. L. Geronimus, Polynomials orthogonal on a circle and their applications, Zap. Naučno-Issled. Inst. Mat. Mekh. Kharkov. Mat. Obshch. 19 (1948), 35-120; English transl., Amer. Math. Soc. Transl. 3 (1962), 1-78.
- 4. M. Marden, Geometry of polynomials, Amer. Math. Soc., Providence, R.I., 1966.
- C. A. Micchelli, Some positive Cotes numbers for the Chebyshev weight function, Aequationes Math. 21 (1980), 105–109.
- 6. C. A. Micchelli and T. J. Rivlin, Numerical integration rules near Gaussian quadrature, Israel J. Math. 16 (1973), 287-299.
- 7. F. Peherstorfer, *Characterization of positive quadrature formulas*, SIAM J. Math. Anal. 12 (1981), 935–942.
- 8. ____, Characterizations of quadrature formulas. II, SIAM J. Math. Anal. 15 (1984), 1021-1030.
- 9. H. J. Schmid, A note on positive quadrature rules, Rocky Mountain J. Math. 19 (1989), 395-404.
- 10. G. Sottas and G. Wanner, The number of positive weights of a quadrature formula, BIT 22 (1982), 339-352.

Institut für Mathematik, J. Kepler Universität Linz, A-4040 Linz, Austria